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Abstract. The seamless access to information and services is a key re-

quirement for any pervasive or ubiquitous computing environment, and

the access via any client is becoming a more and more feature within this

scenario. The paper describes our efforts towards a multi–client voice ap-

plication with focus on an embedded client, like e.g. a commercially avail-

able PDA. We give an overview on speech recognition techniques suited

for the special requirements of the expected acoustic environments and

explore the ability to design applications that are able to run on different

voice and GUI capable devices.

1 Introduction

The VoiceXML standard is currently becoming a widely accepted way to de-
sign voice controlled applications. Whereas with HTML and additional tools
such as ECMA script or Perl it is possible to design graphical user interfaces
and simple but already dynamically interacting applications, the combination of
VoiceXML and HTML allows us to create a multi-modal interface that simulta-
neously supports also human voice. Since no standardized combination of both
markup languages is available, we developed a multi-client approach that allows
to write applications in VoiceXML, HTML, or both type of dialog descriptions,
depending on the kind of modality provided by the client.

Figure 1 shows the general architecture of such a scenario. The central part
is an application server that generates appropriate VoiceXML and HTML pages.
We assume 3 different kinds of clients:

– clients with a graphical user interface only
– clients with a voice user interface only
– clients with a multi-modal user interface combining graphic and voice

As a graphical user interface we assume the standard HTML browser. For
”Voice only” we assume a voice server capable to handle input via a telephone
line. In the third case the client is a multi-modal VoiceXML browser that is
able to process VoiceXML pages as well as HTML [9]. A client-independent
application server uses XSLT style-sheets that depend on the client’s capabilities
for the generation of a proper output.



Figure 1. The multi-client scenario.

To demonstrate the capabilities of this scenario we present a ”traffic jam”
application that allows to obtain online information about the current traffic sit-
uation on any highway in Germany. The server side of the application is entirely
written in PHP. The server generates VoiceXML and HTML pages which may
also contain ECMA script. The application is completely platform independent,
and the support for a new client can simply be added by the definition of new a
XSL style sheet.

The remainder of the paper is organized as follows: In Section 2 we give a brief
overview over speech recognition techniques for client and server sided speech
recognition. In Section 3 we focus on the application design with an emphasis
on XSLT client dependent output formatting. Section 4 describes the example
application and a brief summary is given in Section 5.

2 Speech Recognition

Voice driven interfaces for consumer devices such as PDAs, mobile phones,
smart–phones, or car navigation systems are becoming increasingly popular.
While today there is no doubt that the overwhelming majority of such appli-
ances will make use of the well established Hidden Markov Model (HMM) based
approach to statistical speech recognition, it is also obvious that special needs
of the embedded and mobile domain must be considered. In the remainder of
this section we will review the basic requirements imposed by the scenario under
consideration and will describe how these are taken into account in the training
of acoustic models as well as in the recognition.

Emerging standards like VoiceXML offer an up to now unknown degree of
freedom in the dialog design for the voice driven interfaces. Therefore, sub–word
HMM based recognizers that offer a large flexibility in the vocabulary and dia-
log design, are becoming indispensable, whereas whole–word based recognizers,
which are still predominant in many small vocabulary embedded speech recogni-
tion applications, will more and more disappear from the scene. Recent industrial



joint efforts in the creation of high quality speech data bases for consumer devices
(see [12]) already take this into consideration by collecting a substantial amount
of rich context data. We have recently started to explore the offered flexibility
of such speech data bases by the design of a special phone set that uses both
general and application specific phones (e.g. for digits). By a careful analysis of
relationships between recognition errors and model inventory, we were able to
reduce the digit error rate in an automotive environment by up to 20 percent
relative, without affecting the recognition accuracy for other applications.

It is well known that recognition accuracy improves significantly, if the acous-
tic model is trained with data that matches the target domain, e.g. in the type
and amount of environment noise . Since voice interfaces for embedded devices
are expected to work under a wide variety of conditions — consider, for exam-
ple, the use of your PDA in your office, your car, or in a train station — the
acoustic model must therefore incorporate training speech that properly reflects
the characteristics of different environments.

Finally, but probably most important, the design of an embedded speech
recognizer has to deal with only limited computational resources, both in terms
of CPU power and memory capacity, that today’s embedded devices can of-
fer. While some applications may run entirely on the local device and therefore
require a relatively compact acoustic model, others may defer parts of the recog-
nition process to a recognition server, which requires compatibility of at least
the client’s and server’s acoustic front–end.

The latter is ensured by the use of a standard acoustic front–end, that com-
putes 13 Mel Frequency Cepstrum Coefficients (MFCC) every 15 milliseconds.
Utterance based cepstral mean subtraction and C0 normalization are applied to
compensate for the acoustic channel and the first and second order delta coef-
ficients are computed to capture the temporal dynamics of the speech signal.
While more recently other feature extraction techniques such as MVDR [8] have
been demonstrated to provide superior accuracy in noisy environments, cepstral
coefficients are well suited for low bit–rate compression and transmission [11].
Moreover, speech can be reconstructed from cepstral coefficients and a simple
pitch tracker [6], which we consider as a prerequisite for the text–to–speech
component of future multi–modal interfaces for embedded devices.

The use of additive noise from the real environment is a well known method
to increase the robustness of a speech recognizer under adverse conditions (e.g.
[13, 3]). While we concentrated on the use of engine noise for in–car speech
recognition in the past [10]), we have more recently started to incorporate a
wider variety of non–stationary noise types that were collected with commercially
available PDAs.

Recognizer training comprises the definition of a suitable HMM inventory
and the determination of the HMM parameters. For that purpose, the training
data is viterbi–aligned against its transcription in order to obtain an allophonic
label for each feature vector. Context dependent non cross–word triphone HMMs
are obtained from the leaves of a decision network [1] that is constructed by
asking binary questions about the phonetic context Pi for each feature vector,



i = −1, . . . , 1. These questions are of the form:“Is the phone in position i in the
subset Sj?”, and the subsets are derived from meaningful phone classifications
commonly used in speech analysis. We found small gains from using only clean
data for the construction of the HMM inventory. Finally, the data at each leaf of
the network is used in a k–means procedure to obtain initial output probabilities
whose parameters are then refined by running a few iterations of the forward–
backward algorithm.

The k–means procedure follows a simple rule of thumb and equally distributes
a fixed number Gaussian mixture components across the HMM states. Usually,
in a highly dynamic and heterogeneous environment, an increased total number
of Gaussians can significantly improve the recognition accuracy. However, this
is infeasible for applications that have to deal with a limited amount of mem-
ory, and therefore the determination of an appropriate acoustic model size is of
particular importance.

The Bayesian Information Criterion

BIC(M) = log L(X, M) − 1/2(#(M) · log(n)) (1)

is a model selection criterion that penalizes the likelihood L(X,M) of a data set
X of size n by the number of parameters #(M) in the model [7]. We used BIC
based clustering as an alternative to the k–means procedure and found that the
method can produce both smaller models and more accurate results; cf. [10].

The so created acoustic model can run with either IBM’s large vocabu-
lary telephony speech recognition engine, which employs a fast pre–selection
of candidate words and an asynchronous stack search algorithm, or with a time–
synchronous viterbi–decoder. The latter is the core of IBM’s Embedded Speech
Engine (ESE), which is designed for the use with a moderate vocabulary size
and finite state grammars. The highly portable and scalable ESE can run on any
suitable 32 bit general–purpose CPU; see [4] for an overview on design issues and
performance.

3 The Multi-client Design

This section gives a brief overview on the multi-client capabilities of the applica-
tion. The techniques described here constitute one of several possible approaches,
and were selected because they allow to easily extend the application for a new
client.

Originally, we defined several requirements for the application behavior:

1. The application has to cover different clients.
2. The incorporation of a new client into the running application has to be

maximally simplified.
3. The executive code has to be separated from the data as well as dialog control

description.

To achieve the above mentioned requirements we decided for the use of XML,
XSL and XSLT in a PHP environment. The dialog flow is described in XSL files.



For the different clients the different XSL files are defined wherever it is required.
The dynamical data – like e.g. client side application data, grammars, etc. – are
stored in the XML files. Beside this two type of files there are also static data
like audio files, graphical images, static grammar or other static data which can
be used for improving the design for a certain client.

The PHP server side application is listening to the clients’ requests. Based on
the incoming HTTP request and the type of the client, the PHP script selects
the appropriate XSL file (holding the client dependent static data), an XML
file (holding the client independent dynamical data), and some additional static
data files to generate the requested page (pages). The internal structure of the
server side is depicted in Figure 2.

Figure 2. Internal architecture of the server side.

We refined the above mentioned techniques during the development of sev-
eral simple multi-client case study applications. Experience gathered during the
development procedure shows that this multi-client approach is sufficient for the
efficient covering of several different clients.

4 Application

As a prototype application we implemented a simple traffic jam information sys-
tem, where we can easily demonstrate the multi-client as well as the multi-modal
access. With any of the available clients, the user is able to obtain information
about the current traffic situation on any highway in Germany. After obtaining
the requested information, the user can either finish the dialog, or initiate an
appropriate action, like e.g. inform a partner that he is in traffic jam and will
be late.

Differences between the clients lead to the following scenarios:

– In case of a graphical user interface, the user can choose the required infor-
mation by clicking on a map. The list of messages is displayed. After picking



up the concrete message, the map with highlighted problematic area is dis-
played. Optionally an SMS can be sent to a phone number stored in the
clients address book or a new number.

– For telephony clients the entire communication is done by voice. Voice input
is recognized by use of IBM’s standard ViaVoice telephony engine, and the
system response is produced by use of IBM’s trainable concatenative Text-
to-Speech system [5]. The user can either listen to all the messages or can
interrupt the output at any time and continue with the dialog. At the end
the user can again either send the message to a number from the address
book or dictate a new telephone number.

– In case of a multi-modal client both of the previous scenarios are available
simultaneously, and it is possible to use any modality at any time. How-
ever, different from the standard telephony recognition system, in case of
voice communication barge-in is not available, because of some hardware
limitations in today’s handhelds (half duplex audio chips). The client used
in this scenario is a commercially available PDA that runs a multi-modal
browser and is connected to the Internet via GPRS. Because all applica-
tion data needs to be transferred from the server, the images were designed
with respect to the connection speed. Both speech recognition and synthesis
entirely run on the client side and use IBM’s embedded ViaVoice speech
recognition engine and a high-quality concatenative Text-to-Speech system
with low footprints [2].

All clients are providing the same information constrained just by the lack of
the modality. The full benefits from using voice simultaneously with the GUI is
available only for the multi-modal client.

5 Summary

In this paper we described various aspects of the development of a multi-client,
multi-modal voice application. We started with the description of techniques for
the training of highly noise robust acoustic models that are well suited for both
client and server sided speech recognition. We also described the design of a real-
life applications that demonstrates the feasibility of the chosen approach. While
client independence and the arbitrary use of an input modality are important
features of the application design, we consider the XSLT approach as distinct
characteristics of the application.
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